2,279 research outputs found

    What People Are Writing About

    Get PDF

    Preface to the Special Issue on “The Impact of Resilience in Developing Individual and Organizational Capacity to ‘Bounce Back’ from Challenges”

    Get PDF
    In this Preface to the Special Issue on “The Impact of Resilience in Developing Individual and Organizational Capacity to ‘Bounce Back’ from Challenges”, I introduce the need to study resilience in HRD, and lay out the most fundamental concerns surrounding the use of the term resilience in contemporary workplaces and scientific discourse. I also introduce the papers published in the Special Issue, and link them to the overall narrative around resilience at work

    Tuning Fermi-surface properties through quantum confinement in metallic meta-lattices: New metals from old atoms

    Full text link
    We describe a new class of nanoscale structured metals wherein the effects of quantum confinement are combined with dispersive metallic electronic states to induce modifications to the fundamental low-energy microscopic properties of a three-dimensional metal: the density of states, the distribution of Fermi velocities, and the collective electronic response.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let

    Synchrony and exertion during dance independently raise pain threshold and encourage social bonding

    Get PDF
    Group dancing is a ubiquitous human activity that involves exertive synchronized movement to music. It is hypothesized to play a role in social bonding, potentially via the release of endorphins, which are analgesic and rewardinducing, and have been implicated in primate social bonding. We used a 2 2 experimental design to examine effects of exertion and synchrony on bonding. Both demonstrated significant independent positive effects on pain threshold (a proxy for endorphin activation) and in-group bonding. This suggests that dance which involves both exertive and synchronized movement may be an effective group bonding activity

    High-energy environment of super-Earth 55 Cnc e I: Far-UV chromospheric variability as a possible tracer of planet-induced coronal rain

    Full text link
    The irradiation of close-in planets by their star influences their evolution and might be responsible for a population of ultra-short period planets eroded to their bare core. In orbit around a bright, nearby G-type star, the super-Earth 55 Cnc e offers the possibility to address these issues through UV transit observations. We used the Hubble Space Telescope to observe the transit in the FUV over 3 epochs in Apr. 2016, Jan. 2017, and Feb. 2017. These observations reveal significant short- and long-term variability in 55 Cnc chromospheric emission lines. In the last 2 epochs, we detected a larger flux in the C III, Si III, and Si IV lines after the planet passed the approaching quadrature, followed by a flux decrease in the Si IV doublet. In the second epoch these variations are contemporaneous with flux decreases in the Si II and C II doublet. All epochs show flux decreases in the N V doublet as well, albeit at different orbital phases. These flux decreases are consistent with absorption from optically thin clouds of gas, are mostly localized at low and redshifted radial velocities in the star rest frame, and occur preferentially before and during the transit. These 3 points make it unlikely that the variations are purely stellar, yet we show that the occulting material is also unlikely to originate from the planet. We tentatively propose that the motion of 55 Cnc e at the fringes of the stellar corona leads to the formation of a cool coronal rain. The inhomogeneity and temporal evolution of the stellar corona would be responsible for the differences between the visits. Additional variations are detected in the C II doublet in the first epoch and in the O I triplet in all epochs with a different behavior that points toward intrinsic stellar variability. Further observations at FUV wavelengths are required to disentangle between star-planet interactions and the activity of the starComment: 22 pages, 20 figures, accepted for publication in A&

    The Spitzer search for the transits of HARPS low-mass planets - II. Null results for 19 planets

    Full text link
    Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. In this context, we initiated in 2010 an ambitious Spitzer multi-Cycle transit search project that targeted 25 low-mass planets detected by radial velocity, focusing mainly on the shortest-period planets detected by the HARPS spectrograph. We report here null results for 19 targets of the project. For 16 planets out of 19, a transiting configuration is strongly disfavored or firmly rejected by our data for most planetary compositions. We derive a posterior probability of 83% that none of the probed 19 planets transits (for a prior probability of 22%), which still leaves a significant probability of 17% that at least one of them does transit. Globally, our Spitzer project revealed or confirmed transits for three of its 25 targeted planets, and discarded or disfavored the transiting nature of 20 of them. Our light curves demonstrate for Warm Spitzer excellent photometric precisions: for 14 targets out of 19, we were able to reach standard deviations that were better than 50ppm per 30 min intervals. Combined with its Earth-trailing orbit, which makes it capable of pointing any star in the sky and to monitor it continuously for days, this work confirms Spitzer as an optimal instrument to detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler surveys.Comment: Accepted for publication in Astronomy and Astrophysics. 23 pages, 21 figure

    A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b

    Get PDF
    Exoplanets orbiting close to their parent stars could lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to suggest that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 +/- 3.5% (1 sigma), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start ~2 h before, and end >3 h after the ~1 h optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms. We estimate a mass-loss rate in the range of ~10^8-10^9 g/s, which today is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past.Comment: Published in Nature on 25 June 2015. Preprint is 28 pages, 12 figures, 2 table

    The long egress of GJ~436b's giant exosphere

    Full text link
    The M dwarf GJ 436 hosts a transiting warm Neptune known to experience atmospheric escape. Previous observations revealed the presence of a giant hydrogen exosphere transiting the star for more than 5 h, and absorbing up to 56% of the flux in the blue wing of the stellar Lyman-{\alpha} line of neutral hydrogen (H i Ly{\alpha}). The unexpected size of this comet-like exosphere prevented observing the full transit of its tail. In this Letter, we present new Ly{\alpha} observations of GJ 436 obtained with the Space Telescope Imaging Spectrograph (STIS) instrument onboard the Hubble Space Telescope. The stability of the Ly{\alpha} line over six years allowed us to combine these new observations with archival data sets, substantially expanding the coverage of the exospheric transit. Hydrogen atoms in the tail of the exospheric cloud keep occulting the star for 10-25 h after the transit of the planet, remarkably confirming a previous prediction based on 3D numerical simulations with the EVaporating Exoplanet code (EVE). This result strengthens the interpretation that the exosphere of GJ 436b is shaped by both radiative braking and charge exchanges with the stellar wind. We further report flux decreases of 15 +/- 2% and 47 +/- 10% in the red wing of the Ly{\alpha} line and in the line of ionised silicon (Si iii). Despite some temporal variability possibly linked with stellar activity, these two signals occur during the exospheric transit and could be of planetary origin. Follow-up observations will be required to assess the possibility that the redshifted Ly{\alpha} and Si iii absorption signatures arise from interactions between the exospheric flow and the magnetic field of the star.Comment: 10 pages, 7 figures, published in A&
    corecore